Discovering Associations Among Diagnosis Groups Using Topic Modeling
نویسندگان
چکیده
With the rapid growth of electronic medical records (EMR), there is an increasing need of automatically extract patterns or rules from EMR data with machine learning and data mining technqiues. In this work, we applied unsupervised statistical model, latent Dirichlet allocations (LDA), to cluster patient diagnoics groups from Rochester Epidemiology Projects (REP). The initial results show that LDA holds the potential for broad application in epidemiogloy as well as other biomedical studies due to its unsupervised nature and great interpretive power.
منابع مشابه
A review of text mining approaches and their function in discovering and extracting a topic
Background and aim: Four text mining methods are examined and focused on understanding and identifying their properties and limitations in subject discovery. Methodology: The study is an analytical review of the literature of text mining and topic modeling. Findings: LSA could be used to classify specific and unique topics in documents that address only a single topic. The other three text min...
متن کاملDiscovering Spatio-Temporal Relationships Among Activities in Videos Using a Relational Topic-Transition Model
Discovering motion activities in videos is a key problem in computer vision, with applications in scene analysis, video categorization, and video indexing. In this paper, we propose a method that uses probabilistic topic modeling for discovering patterns of motion that occur in a given activity. Our method also identifies how the discovered patterns of motion relate to one another in space and ...
متن کاملDiscovering and Ranking Semantic Associations over a Large RDF Metabase
Information retrieval over semantic metadata has recently received a great amount of interest in both industry and academia. In particular, discovering complex and meaningful relationships among this data is becoming an active research topic. Just as ranking of documents is a critical component of today’s search engines, the ranking of relationships will be essential in tomorrow’s semantic anal...
متن کاملMulti-dimensional Topic Modeling with Determinantal Point Processes
Probabilistic topics models such as Latent Dirichlet Allocation (LDA) provide a useful and elegant tool for discovering hidden structure within large data sets of discrete data, such as corpuses of text. However, LDA implicitly discovers topics along only a single dimension. Recent research on multi-dimensional topic modeling aims to devise techniques that can discover multiple groups of topics...
متن کاملIntegrating Document Clustering and Topic Modeling
Document clustering and topic modeling are two closely related tasks which can mutually benefit each other. Topic modeling can project documents into a topic space which facilitates effective document clustering. Cluster labels discovered by document clustering can be incorporated into topic models to extract local topics specific to each cluster and global topics shared by all clusters. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014